BEN GRAS @BJG
KAVEH RAZAVI @KAVEHRAZAVI
CRISTIANO GIUFFRIDA, HERBERT BOS

VRIJE UNIVERSITEIT AMSTERDAM

HARDWEAR.IO 2018

ABOUT US

TV USec

ABOUT US

* VUsec - Security Research group at VU Amsterdam

TV USec

ABOUT US

* VUsec - Security Research group at VU Amsterdam

* Academic group researching systems software security

TV USec

ABOUT US

* VUsec - Security Research group at VU Amsterdam
* Academic group researching systems software security

* We do software hardening, exploitation

TV USec

ABOUT US

* VUsec - Security Research group at VU Amsterdam
* Academic group researching systems software security
* We do software hardening, exploitation

* Hardware attacks, side channels

TV USec

ABOUT US

* VUsec - Security Research group at VU Amsterdam
* Academic group researching systems software security
* We do software hardening, exploitation

*» Hardware attacks, side channels

OVERVIEW

Cache attacks
Cache defences
TLBleed
Evaluation

Reception

CACHE ATTACKS

n‘m;-mm
B
LI

T

S ——

fi

il

D) G G

ik

(2]

A
1
|

f

S|

DE CHANN

E LS

SIDE CHANNELS

Leak secrets outside the regular intertace

DE CHANNELS

* Leak secrets outside the regular intertace

INSIDE A CPU

INSIDE A CPU

L1 Data
32 KB

L2 256KB L2 256KB L2 256KB L2 256KB

L3 Unified - 6MB

SIDE CHANNEL ATTACKS ON SHARED
RESOURCES

There are shared resources between processes
RAM, CPU cache, TLB, computational resources ..
Covert channels

Sometimes: Side channels (spying)

- XAMPLE: FLUSH+RELOAD

Work by Yuval Yarom, Katrina Falkner

- XAMPLE: FLUSH+RELOAD

Attacker

B Flush [wait [Reload

Work by Yuval Yarom, Katrina Falkner

- XAMPLE: FLUSH+RELOAD

Attacker

B Flush [wait [Reload

Work by Yuval Yarom, Katrina Falkner

- XAMPLE: FLUSH+RELOAD

Attacker

B Flush [wait [Reload

Work by Yuval Yarom, Katrina Falkner

- XAMPLE: FLUSH+RELOAD

Can attack AES implementation with T tables
A table lookup happens T; [xi = pi ® ki]

p;is a plaintext byte, k; a key byte

- XAMPLE: FLUSH+RELOAD

Again: secrets are betrayed by memory accesses

Known plaintext + accesses = key recovery

EXAMPLE: FLUSH+RELOAD

Again: secrets are betrayed by memory accesses

Known plaintext + accesses = key recovery

Plaintext byte
o 40 80 co £8

- XAMPLE: LIBGCRYPT ECC

Not side channel proof version:

- XAMPLE: LIBGCRYPT ECC

Not side channel proof version:

void _gcry_mpi_ec_mul_point (mpi_point_t result,
gery_mpi_t scalar, mpi_point_t point,
mpi_ec_t ctx)

{

for (j=nbits-1; j >= 0; j--) {

_gcry_mpi_ec_dup_point (result, result, ctx);
if (mpi_test_bit (scalar, j))
_gery_mpi_ec_add_points(result,result,point,ctx);

}
L

- XAMPLE: LIBGCRYPT ECC

Not side channel proof version:

EXAMPLE: LIBGCRYPT ECC

R : :

nnnnnnnnnnnnnnnnnnnnnnn
1000 T T MTToC T U TCTTTITC VICYY T T

|
!

800 |- :

600 |- .

400 - .

200 | .

1000 T T T T]

800 - .

600 |- .

400 - .

200 | .

1000

800

600

400

200

1000

800

600

400

200

EXAMPLE: LIBGCRYPT ECC

10000

20000 30000

40000

10000

20000 30000

40000

- XAMPLE: LIBGCRYPT ECC

More side channel proof version

EXAMPLE: LIBGCRYPT ECC

oro - cociira lem Lo avioriag
500 T mivrc oot urs \.IJU VI wVyY A" A A (=1} T T

400 |

300 + :

200 | .

100+ .

0 10000 20000 30000 40000

500 [T T T T]

400 | |

300 + .

200 | .

100+ .

0 10000 20000 30000 40000

CACHE DEFENCES

e i i . . Vg

y » - '
: WL~ S
- - “'!o‘lll SRR { <K :
|y v wy v = \-! ”~) ,..
i NN . Ny 1 e
. I

J - " J ~
™ . \; \.n:\ ..ﬂ\ \ HM\ 1
() T § PN v - ' " {
! L o
b ST -~ ! f ._:,
’ &
i .
i
A) A
{ v /
ik |
!
\
% ..—..‘ b
5. 4 u“.,
ke 0
L B
¥ n.« g 5
¥ ?
I
it il
y A] .
“_.%) ~
L
. D { A M
! T & " N .
Bt e 1 ~_
\ & J

CACHE PARTIONING

CACHE PARTIONING

L1 Data
32 KB

L2 256KB L2 256KB L2 256KB L2 256KB

L3 Unified - 6MB

CACHE COLOURING

Figure out page colors
These map to shared cache sets
Do not share same colors across security boundaries

Kernel arranges this

CACHE COLOURING

* Figure out page colors
* These map to shared cache sets
* Do not share same colors across security boundaries

* Kernel arranges this

CACHE COLOURING

* Figure out page colors
* These map to shared cache sets
* Do not share same colors across security boundaries

* Kernel arranges this

CACHE COLOURING

* Figure out page colors
* These map to shared cache sets
* Do not share same colors across security boundaries

* Kernel arranges this

CACHE COLOURING

* Figure out page colors
* These map to shared cache sets
* Do not share same colors across security boundaries

* Kernel arranges this

CACHE COLOURING

* Figure out page colors
* These map to shared cache sets
* Do not share same colors across security boundaries

* Kernel arranges this

CACHE COLOURING

* Figure out page colors
* These map to shared cache sets
* Do not share same colors across security boundaries

* Kernel arranges this

CACHE COLOURING

* Figure out page colors
* These map to shared cache sets
* Do not share same colors across security boundaries

* Kernel arranges this

CACHE PARTITIONING: CAT

Intel CAT: Cache Allocation Technology
Intended for predictable performance for VMs
Partitions caches in ways

Hardware feature

CACHE PARTITIONING: CAT

* Intel CAT: Cache Allocation Technology
* Intended for predictable performance for VMs
* Partitions caches in ways

* Hardware feature

CACHE PARTITIONING: CAT

* Intel CAT: Cache Allocation Technology
* Intended for predictable performance for VMs
* Partitions caches in ways

* Hardware feature

CACHE PARTITIONING: CAT

* Intel CAT: Cache Allocation Technology
* Intended for predictable performance for VMs
* Partitions caches in ways

* Hardware feature

CACHE PARTITIONING: CAT

* Intel CAT: Cache Allocation Technology
* Intended for predictable performance for VMs
* Partitions caches in ways

* Hardware feature

CACHE PARTITIONING: CAT

* Intel CAT: Cache Allocation Technology
* Intended for predictable performance for VMs
* Partitions caches in ways

* Hardware feature

CACHE PARTITIONING: CAT

* Intel CAT: Cache Allocation Technology

* Intended for predictable performance for VMs

* Partitions caches in ways

* Hardware feature

CACHE PARTITIONING: CAT

* Intel CAT: Cache Allocation Technology
* Intended for predictable performance for VMs
* Partitions caches in ways

* Hardware feature

CACHE PARTITIONING: TSX

CACHE PARTITIONING: TSX

Intel TSX: Transactional Synchronization Extensions

CACHE PARTITIONING: TSX

Intel TSX: Transactional Synchronization Extensions

Intended for hardware transactional memory

CACHE PARTITIONING: TSX

Intel TSX: Transactional Synchronization Extensions
Intended for hardware transactional memory

Transaction working set should fit in cache, otherwise auto-abort

CACHE PARTITIONING: TSX

Intel TSX: Transactional Synchronization Extensions
Intended for hardware transactional memory
Transaction working set should tit in cache, otherwise auto-abort

We can use this as a defence

CACHE PARTITIONING: TSX

Intel TSX: Transactional Synchronization Extensions
Intended for hardware transactional memory
Transaction working set should tit in cache, otherwise auto-abort

We can use this as a defence

Plaintext byte

000 40 80 cO f£8

»
.

O
A=
O
a8
O
<
O

S —
b N

CACHE PARTITIONING: TSX

Intel TSX: Transactional Synchronization Extensions

Intended for hardware transactional memory

Transaction working set should tit in cache, otherwise auto-abort
We can use this as a defence

Plaintext byte
00 40 80 cO £8

0 N

Plaintext byte
Q0 40 80 ‘co £8

4

»
.

QO
R=
O]
28
Q
(2
O

S —
b N

TLBLEED

L\

AN

:
,\Ll

e

TLBL

-D: TLB AS SHAR

D STAT

TLBLEED: TLB AS SHAR

D STAT

Other structures than cache shared between threads?

What about the TLB?
Documented: TLB has L1iTLB, L1dTLB, and L2TLB
They have sets and ways

Not documented: structure

TLB IS JUST ANOTHER CACHE

TLBL

-D: TLB AS SHAR

D STAT

TLBLEED: TLB AS SHAR

Let’s experiment with performance counters

Try linear structure first
All combinations of ways (set size) and sets (stride)
Smallest number of ways is it

Smallest corresponding stride is number of sets

D STAT

TLBLEED: TLB AS SHAR

Let’s experiment with performance counters

Try linear structure first
All combinations of ways (set size) and sets (stride)
Smallest number of ways is it

Smallest corresponding stride is number of sets

D STAT

TLBLEED: TLB AS SHAR

Let’s experiment with performance counters

Try linear structure first
All combinations of ways (set size) and sets (stride)
Smallest number of ways is it

Smallest corresponding stride is number of sets

D STAT

TLBL

-D: TLB AS SHAR

D STAT

TLBLE

-D: TLB AS SHAR

For LZTLB:
We reverse engineered a more complex hash function

D STAT

TLBLE

-D: TLB AS SHAR

For LZTLB:
We reverse engineered a more complex hash function

D STAT

Skylake XORs 14 bits, Broadwell XORs 16 bits

TLBL

-D: TLB AS SHAR

For LZTLB:
We reverse engineered a more complex hash function

D STAT

Skylake XORs 14 bits, Broadwell XORs 16 bits

Represented by this matrix, using modulo 2 arithmetic

TLBL

-D: TLB AS SHAR

For LZTLB:
We reverse engineered a more complex hash function

D STAT

Skylake XORs 14 bits, Broadwell XORs 16 bits

Represented by this matrix, using modulo 2 arithmetic

TLBL

-D: TLB AS SHAR

D STAT

TLBLE

-D: TLB AS SHAR

Let's experiment with performance counters

D STAT

TLBLE

-D: TLB AS SHAR

Let's experiment with performance counters

Now we know the structure..
Are TLB's shared between hyperthreads?

D STAT

TLBL

-D: TLB AS SHAR

Let's experiment with performance counters

Now we know the structure..
Are TLB's shared between hyperthreads?

D STAT

Let's experiment with misses when accessing the same set

TLBL

-D: TLB AS SHAR

Let's experiment with performance counters

Now we know the structure..
Are TLB's shared between hyperthreads?

D STAT

Let's experiment with misses when accessing the same set

L1 dtib

TLB set

TLBL

-D: TLB AS SHAR

Let's experiment with performance counters

Now we know the structure..
Are TLB's shared between hyperthreads?

D STAT

Let's experiment with misses when accessing the same set

L1 itlb

12 12 16
TLB set TLB set

TLBL

-D: TLB AS SHAR

Let's experiment with performance counters

Now we know the structure..
Are TLB's shared between hyperthreads?

D STAT

Let's experiment with misses when accessing the same set

L1 itlb

8 12 16
TLB set TLB set

32 04 96
TLB set

TLBLEED: TLB AS SHAR

D STAT

3

Sandybridge 128

Ivybridge 128

Haswell 128

HaswellXeon 128 .

Skylake 128 12 212.0 XOR-7
BroadwellXeon 256 6 2724 XOR-8
Coffeelake 128 12 230.3 XOR-7

L1 dILB LI1ILB L2 sTLB
16 .
16

00 00 00 00 00 A K|S

4 /
4 v
4 v
4 v
4 v
4 v
4 v

TLBLEED: TLB AS SHAR

We find more TLB properties

D STAT

Size, structure, sharing, miss penalty, hash function

3
g

L1 dTLB L11TLB L2 sTLB
Name year pn hsh pn hsh shr W pn hsh

Sandybridge 128

Ivybridge 128

Haswell 128

HaswellXeon 128 .

Skylake 128 12 212.0 XOR-7
BroadwellXeon 256 6 2724 XOR-8
Coffeelake 128 12 230.3 XOR-7

4 / 4
4 v 4
4 v 8
4 v 8
4 v 8
4 v 8
4 v 8

TLBL

-D: TLB AS SHAR

D STAT

TLBLEED: TLB AS SHAR

Can we use only latency?

Map many virtual addresses to same physical page

D STAT

TLBLEED: TLB AS SHAR

Can we use only latency?

D STAT

Map many virtual addresses to same physical page

L1 dTLB hit
L2 TLB hit
L2 TLB miss

>
O
c
Q
-
o
Q
—
(1

130 140 150 160
CPU cycles

170

180

TLBL

-D: TLB AS SHAR

D STAT

TLBLEED: TLB AS SHAR

D STAT

Let’s observe EADSA ECC key multiplication

void _gcry_mpi_ec_mul_point (mpi_point_t result,

gery_mpi_t scalar, mpi_point_t point,

mpi_ec_t ctx)

{

for (j=nbits-1; j >= 0; j--) {

_gcry_mpi_ec_dup_point (result, result, ctx);

if (mpi_test_bit (scalar, j))

_gcry_mpi_ec_add_points(result,result,point,ctx);

}
L

TLBLEED: TLB AS SHAR

D STAT

Let’s observe EADSA ECC key multiplication

Scalar is secret and ADD only happens if there's a 1

void _gcry_mpi_ec_mul_point (mpi_point_t result,

gery_mpi_t scalar, mpi_point_t point,

mpi_ec_t ctx)

{

for (j=nbits-1; j >= 0; j--) {

_gcry_mpi_ec_dup_point (result, result, ctx);

if (mpi_test_bit (scalar, j))

_gcry_mpi_ec_add_points(result,result,point,ctx);

}
L

TLBL

-D: TLB AS SHAR

D STAT

Let’s observe EADSA ECC key multiplication

Scalar is secret and ADD only happens if there's a 1

But: we can not use code information! Only data..!

void _gcry_mpi_ec_mul_point (mpi_point_t result,

gery_mpi_t scalar, mpi_point_t point,

mpi_ec_t ctx)

{

for (j=nbits-1; j >= 0; j--) {

_gcry_mpi_ec_dup_point (result, result, ctx);

if (mpi_test_bit (scalar, j))

_gcry_mpi_ec_add_points(result,result,point,ctx);

}
L

TLBL

-D: TLB AS SHAR

D STAT

TLBLEED: TLB AS SHAR

Let’s find the spatial L1 DTLB separation
There isn't any

Too much activity in both blue/green cases

D STAT

TLBLEED: TLB AS SHARE

Let’s find the spatial L1 DTLB separation

There isn't any

Too much activity in both blue/green cases

-—
v
n

m

—

-

—

-

D STAT

TLBLEED: TLB AS SHARED STATE

TLBL

-D: TLB AS SHAR

D STAT

TLBL

-D: TLB AS SHARE

-
Q
n

(e8]

-

—

—

ad

D STAT

TLBL

-D: TLB AS SHAR

D STAT

TLBLE

-D: TLB AS SHAR

D STAT

Monitor a single TLB set and use temporal information

TLBLE

-D: TLB AS SHAR

D STAT

Monitor a single TLB set and use temporal information

Use machine learning (SVM classifier) to tell the difterence

TLBLE

-D: TLB AS SHARE

D STAT

Monitor a single TLB set and use temporal information

Use machine learning (SVM classifier) to tell the difterence

TLBLE

-D: TLB AS SHARE

D STAT

Monitor a single TLB set and use temporal information

Use machine learning (SVM classifier) to tell the difterence

latency

A 71* AR A LM A

AR

TLBLE

-D: TLB AS SHAR

D STAT

Monitor a single TLB set and use temporal information

Use machine learning (SVM classifier) to tell the difterence

TLBLEED: TLB AS SHARED STATE

Mo

Support
vectors

TLBLEED: TLB AS SHARED STAT

Monitor a single TLB set and use temporal information

Use machine learning (SVM classifier) to tell the difterence

— latency

LA AL A LM ARA MR LA

- moving average ,

cycles

| - |
- \ "L N H. A 111 :
| 1 J%a % \ M | ’| iJ (¥
] \ I'N\ ! ’ ~ !

classifier output
dup detection
mul detection

-—
-
Q

-
-
o

=

>

n

time

!-—-

| I
‘)

Lo e
-mmm ik o
- . — de . _.w__-’“;'\ ~—< .$
w- 34 |

v -— o

B s T
| i

L Te— | 3
i Bliideme diEmremm s @
Soe e — :

-
-

I.im.lll-

IR ==
n.lll"-i

-

|

..... e =D

EVALUATION

TLBL

=D,

N

- LIABILITY

TLBLEED RELIABILITY

Microarchitecture Trials Success Median BF

Skylake 500 0.998 21.6
Broadwell 500 0.982 230

Coffeelake 500 0.998 22.6
Total 1500 0.993

TLBLEED RELIABILITY

Microarchitecture Success Median BF

Skylake 0.998 21.6
Broadwell 0.982 23.0

Coffeelake 0.998 22.6
Total 0.993

Single trace capture: Tms

Median end-to-end time: 17/s

TLBLEED RELIABILITY

Microarchitecture Success Median BF

B broadwell
B kabylake

Skylake 0.998 21.6
I skylake

Broadwell 0.982 23.0
Coffeelake 0.998 22.6
Total 0.993

>
o)
=
)
-]
(on
Q
—
(18

Single trace capture: Tms

Median end-to-end time: 17/s e

log, brute force attempts

TLBL

Microarchitecture

Skylake
Broadwell
Coffeelake
Total

=D,

RELIABILITY

Median BF

21.6
23.0

22.6

Success
0.998
0.982
0.998
0.993

Single trace capture: Tms

Median end-to-end time: 17/s

Microarchitecture
Broadwell (CAT)

Broadwell

>
o)
=
)
-]
(on
Q
—
(18

Trials
500
500

Success
0.960
0.982

15 20
log, brute force attempts

Median BF
22.6

23.0

B broadwell
B kabylake
I skylake

!-—-

| I
‘)

Lo e
-mmm ik o
- . — de . _.w__-’“;'\ ~—< .$
w- 34 |

v -— o

B s T
| i

L Te— | 3
i Bliideme diEmremm s @
Soe e — :

-
-

I.im.lll-

IR ==
n.lll"-i

-

|

..... e =D

RECEPTION

RECEPTION

Intel: same power as cache attacks

OpenBSD disabled Intel HT

Widespread media coverage, logo
thanks to TheRegister

Wikipedia

-CEPTION

Intel: same power as cache attacks

CVS: cvs.openbsd.org: src

Mark Kettenis Tue, 19 Jun 2018 12:30:19 -0700

CVSROOT: /cvs
Module name: src
Changes by: kette...@cvs.openbsd.org 2018/06/19 13:29:52

° Modified files:
sys/arch/amd64/amd64: cpu.c
p e I | I S a e | I e sys/arch/amd64/include: cpu.h

sys/kern : kern_sched.c kern_sysctl.c

sys/sys : sched.h sysctl.h

Log message:

SMT (Simultanious Multi Threading) implementations typically share
TLBs and L1 caches between threads. This can make cache timing

attacks a lot easier and we strongly suspect that this will make

Widespread media coverage, logo
thanks to TheRegister

Wikipedia

-CEPTION

Intel: same power as cache attacks

CVS: cvs.openbsd.org: src
Mark Kettenis Tue, 19 Jun 2018 12:30:19 -0700

CVSROOT: /cvs
Module name: src
Changes by: kette...@cvs.openbsd.org 2018/06/19 13:29:52

° Modified files:
sys/arch/amd64/amd64: cpu.c
p e I | I S a e | I e sys/arch/amd64/include: cpu.h

sys/kern kern_sched.c kern_ sysctl.c
sys/sys sched.h sysctl.h

Log message:

SMT (Simultanious Multi Threading) implementations typically share
TLBs and L1 caches between threads. This can make cache timing
attacks a lot easier and we strongly suspect that this will make

Widespread media coverage, logo
thanks to TheRegister

Wikipedia

-CEPTION

Intel: same power as cache attacks

CVS: cvs.openbsd.org: src

Mark Kettenis Tue, 19 Jun 2018 12:30:19 -0700

CVSROOT: /cvs
Module name: src
Changes by: kette...@cvs.openbsd.org 2018/06/19 13:29:52

° Modified files:
sys/arch/amd64/amd64: cpu.c
e n I S a e n e sys/arch/amd64/include: cpu.h
sys/kern : kern_sched.c kern_sysctl.c
sys/sys : sched.h sysctl.h

Log message:

SMT (Simultanious Multi Threading) implementations typically share
TLBs and L1 caches between threads. This can make cache timing
attacks a lot easier and we strongly suspect that this will make

Widespread media coverage, logo
thanks to TheRegister

TLBleed

From Wikipedia, the free encyclopedia

. . . TLBleed is a cryptographic side-channel attack that uses machine lea
I I p e I a simultaneous multithreading.['112] As of June 2018, the attack has only
vulnerable to a variant of the attack, but no proof of concept has been

The attack led to the OpenBSD project disabling simultaneous multith
theoretically be prevented by preventing tasks with different security cq

References |[edit]

1. A Williams, Chris (2018-06-22). "Meet TLBleed: A crypto-key-leaking C
2. Aabcygrghese, Sam (25 June 2018). "OpenBSD chief de Raadt says

CONCLUSION

CONCLUSION

* Practical, reliable, high
resolution side channels
exist outside the cache

http://www.vusec.net

CONCLUSION

* Practical, reliable, high
resolution side channels
exist outside the cache

* They bypass defences

http://www.vusec.net

CONCLUSION

* Practical, reliable, high
resolution side channels
exist outside the cache

* They bypass defences

* @bjg @kavehrazavi

http://www.vusec.net

CONCLUSION

* Practical, reliable, high
resolution side channels
exist outside the cache

* They bypass defences

* @bjg @kavehrazavi

° @vubec

http://www.vusec.net

CONCLUSION

* Practical, reliable, high
resolution side channels
exist outside the cache

* They bypass defences

* @bjg @kavehrazavi

° @vubec

o WWW.vusec.net

http://www.vusec.net

CONCLUSION

* Practical, reliable, high
resolution side channels
exist outside the cache

* They bypass defences

* @bjg @kavehrazavi
* @vubec

o WWW.vusec.net

* Thank you for listening

http://www.vusec.net

