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OVERVIEW

Cache attacks
Cache defences
TLBleed
Evaluation

Reception
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L1 Data
32 KB

L2 256KB L2 256KB L2 256KB L2 256KB

L3 Unified - 6MB




SIDE CHANNEL ATTACKS ON SHARED
RESOURCES

There are shared resources between processes
RAM, CPU cache, TLB, computational resources ..
Covert channels

Sometimes: Side channels (spying)
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- XAMPLE: FLUSH+RELOAD

Can attack AES implementation with T tables
A table lookup happens T; [xi = pi ® ki ]

p;is a plaintext byte, k; a key byte



- XAMPLE: FLUSH+RELOAD

Again: secrets are betrayed by memory accesses

Known plaintext + accesses = key recovery
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Again: secrets are betrayed by memory accesses

Known plaintext + accesses = key recovery

Plaintext byte
o 40 80 co £8
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- XAMPLE: LIBGCRYPT ECC

Not side channel proof version:

void _gcry_mpi_ec_mul_point (mpi_point_t result,
gery_mpi_t scalar, mpi_point_t point,
mpi_ec_t ctx)

{

for (j=nbits-1; j >= 0; j--) {

_gcry_mpi_ec_dup_point (result, result, ctx);
if (mpi_test_bit (scalar, j))
_gery_mpi_ec_add_points(result,result,point,ctx);

}
L
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EXAMPLE: LIBGCRYPT ECC
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- XAMPLE: LIBGCRYPT ECC

More side channel proof version



EXAMPLE: LIBGCRYPT ECC
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L1 Data
32 KB

L2 256KB L2 256KB L2 256KB L2 256KB

L3 Unified - 6MB




CACHE COLOURING
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Kernel arranges this
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CACHE PARTITIONING: TSX

Intel TSX: Transactional Synchronization Extensions

Intended for hardware transactional memory

Transaction working set should tit in cache, otherwise auto-abort
We can use this as a defence

Plaintext byte
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TLBLEED: TLB AS SHAR

D STAT

Other structures than cache shared between threads?

What about the TLB?
Documented: TLB has L1iTLB, L1dTLB, and L2TLB
They have sets and ways

Not documented: structure



TLB IS JUST ANOTHER CACHE
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TLBL

-D: TLB AS SHAR

Let's experiment with performance counters

Now we know the structure..
Are TLB's shared between hyperthreads?

D STAT

Let's experiment with misses when accessing the same set

L1 itlb

8 12 16
TLB set TLB set

32 04 96
TLB set




TLBLEED: TLB AS SHAR

D STAT

3

Sandybridge 128

Ivybridge 128

Haswell 128

HaswellXeon 128 .

Skylake 128 12 212.0 XOR-7
BroadwellXeon 256 6 2724 XOR-8
Coffeelake 128 12 230.3 XOR-7

L1 dILB LI1ILB L2 sTLB
16 .
16

00 00 00 00 00 A K|S
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4 v
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TLBLEED: TLB AS SHAR

We find more TLB properties

D STAT

Size, structure, sharing, miss penalty, hash function

3
g

L1 dTLB L11TLB L2 sTLB
Name year pn hsh pn hsh shr W pn hsh

Sandybridge 128

Ivybridge 128

Haswell 128

HaswellXeon 128 .

Skylake 128 12 212.0 XOR-7
BroadwellXeon 256 6 2724 XOR-8
Coffeelake 128 12 230.3 XOR-7

4 / 4
4 v 4
4 v 8
4 v 8
4 v 8
4 v 8
4 v 8
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Map many virtual addresses to same physical page
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TLBLEED: TLB AS SHAR

Can we use only latency?

D STAT

Map many virtual addresses to same physical page

L1 dTLB hit
L2 TLB hit
L2 TLB miss
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TLBLEED: TLB AS SHAR

D STAT

Let’s observe EADSA ECC key multiplication

void _gcry_mpi_ec_mul_point (mpi_point_t result,

gery_mpi_t scalar, mpi_point_t point,

mpi_ec_t ctx)

{

for (j=nbits-1; j >= 0; j--) {

_gcry_mpi_ec_dup_point (result, result, ctx);

if (mpi_test_bit (scalar, j))

_gcry_mpi_ec_add_points(result,result,point,ctx);

}
L
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Let’s observe EADSA ECC key multiplication

Scalar is secret and ADD only happens if there's a 1

But: we can not use code information! Only data..!

void _gcry_mpi_ec_mul_point (mpi_point_t result,

gery_mpi_t scalar, mpi_point_t point,

mpi_ec_t ctx)

{

for (j=nbits-1; j >= 0; j--) {

_gcry_mpi_ec_dup_point (result, result, ctx);

if (mpi_test_bit (scalar, j))

_gcry_mpi_ec_add_points(result,result,point,ctx);

}
L
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TLBLEED: TLB AS SHARED STAT

Monitor a single TLB set and use temporal information

Use machine learning (SVM classifier) to tell the difterence
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Microarchitecture

Skylake
Broadwell
Coffeelake
Total
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RELIABILITY

Median BF

21.6
23.0

22.6

Success
0.998
0.982
0.998
0.993

Single trace capture: Tms

Median end-to-end time: 17/s
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Broadwell (CAT)
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TLBleed

From Wikipedia, the free encyclopedia

. . . TLBleed is a cryptographic side-channel attack that uses machine lea
I I p e I a simultaneous multithreading.['112] As of June 2018, the attack has only
vulnerable to a variant of the attack, but no proof of concept has been

The attack led to the OpenBSD project disabling simultaneous multith
theoretically be prevented by preventing tasks with different security cq

References |[edit]

1. A Williams, Chris (2018-06-22). "Meet TLBleed: A crypto-key-leaking C
2. Aabcygrghese, Sam (25 June 2018). "OpenBSD chief de Raadt says
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CONCLUSION

* Practical, reliable, high
resolution side channels
exist outside the cache

* They bypass defences

* @bjg @kavehrazavi
* @vubec

o WWW.vusec.net

* Thank you for listening
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